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Abstract. The deformation of a fluid droplet in an eledrie field is computed by a slender 
body analysis. The drop shape is assumed slender and axisymmetric, but is otherwise 
arbitrary. Both the shape and aspecl ratio l i b  of the drop arc obtained, in the limit of a 
strong imposed field, IO 0th i / b ) - ' .  The shape is found to be nearly spheroidal with 
sharper ends, as observed experimentally and as predicted by full numerical solutions. 

1. Introduction 

The deformation of fluid interfaces in electric fields is relevant to many processes, 
including the break-up of rain droplets in thunderstorms, ink-jet printing, breakdown 
of insulating liquids due to impurities and electrohydrodynamic atomization. The 
deformation of spheroidal fluid droplets has recently been used as a model of the 
behaviour of aggregates in electrorheological fluids [l]. In this paper we study the 
deformation of a long, slender drop using slender-body analysis. The predicted drop 
shape has ends which are more pointed than those of a spheroid. 

Consider a non-conducting incompressible fluid drop, with permittivity E,,E,, sur- 
rounded by fluid with permittivity and initially held spherical by surface tension 
y. If a uniform electric field of strength E is applied, and if E ,  # E > ,  the electric stress 
will cause the drop to deform, either until the drop bursts, or until the jump in the 
electric stress at the interface is balanced by surface tension 12-51, 

Similar behaviour occurs in a magnetic field if the magnetic permeability of the 
drop differs from that of the surrounding fluid. Experiments have been performed 
using ferrofluids [6-81, and at sufficiently high field strengths the drops appear to have 
pointed ends. There is a direct analogy between the magnetic and electrical problems, 
and the electrostatic results of this paper can be applied directly to magnetostatics. 

The shape of the drop can be computed numerically, determining just the final 
equilibrium shape [3, 9, IO], or following the motion of the drop as it deforms from 
an initially spherical shape [ I l l .  Analytic treatments have either looked at small 
deformations of a spherical drop [ 5 ] ,  or have assumed that the drop is a spheroid 
[4, 121. This latter assumption helps the analysis considerably, as there are exact 
solutions for the electric field around an ellipsoid [13]. 

Taylor [4] studied perfectly conducting spheroids in a uniform electric field. The 
electric stresses d o  not exactly balance those due to interfacial tension, but he obtained 
two approximate solutions. In the first, the stress balance was exact at the poles and 
at the equator of the drop; in the second the balance was exact at the pole, and total 
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force balance was satisfied at  the equator. The results of these two approximations 
differed little, suggesting that the errors are small. These errors may then be used to 
obtain a correction to the spheroidal shape [14]. 

An alternative technique is based on energy arguments [6-8,121. The electrical 
energy of a spheroid in a uniform electric field is known analytically, and the surface 
energy due to interfacial tension is proportional to the surface area of the spheroid. 
The drop is assumed to take the aspect ratio which minimizes the sum of these two 

hysteresis in the drop shape, and the predicted aspect ratios are generally in good 
agreement with full numerical calculations, up to aspect ratios of 10 or more [ l l ] .  

In the work presented here, the drop is axisymmetric, but the spheroidal assumption 
is relaxed. Results are obtained for high field strengths, when the drop is long and 
slender. Slender body analyses have been used to predict the deformation and break-up 

to compute the electric field around long slender bodies [17, IS]. Here we use slender- 
body analysis to determine first (in section 2) the electric field around the drop and 
then (in section 3) the drop shape. The ends of the drop are predicted to be more 
pointed than those of a spheroid, in agreement with experimental observation [3,6,7]. 
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2. The electric field 

The electric field E of strength E is applied to the z-axis, and we use cylindrical 
coordinates ( r ,  z ) .  The drop shape r = R ( z )  is axisymmetric (figure 1) .  The drop has 
length 21, radial dimension R ( 0 )  = b and volume $ra'. The subscripts 1 and 2 will be 
used to denore iieids and permirriviries inside and ourside rhe drop, respectively. Tine 
superscripts r and z denote fields in the r and z directions, while superscripts n and 
t denote fields normal and tangential to the surface of the drop. 

Figure 1. The drop of fluid I surrounded by fluid 2. 

By symmetry the radial field E ;  is zero along the axis of the drop. V . E = 0 implies 
E ; - O ( E ; b / l ) .  We therefore set E ; = O  and take E ;  to be independent of r, a result 
which is exact for a spheroid aligned with the field [13]. We represent the electric field 
outside the drop by that due to a line distribution of charges of strength q ( z )  along 
the axis. The potential q5 outside the drop is 

q ( z ' )  dz' 
~ T E ~ E ~ ( ( Z  - z ' ) ~ +  r2)"2' 

+( r, z )  = -Ez+ 
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The evaluation of the electric stresses acting on the surface of the drop requires the 
electric field at the drop surface r = R ( z ) .  Away from the ends ofthe drop, q ( z )  varies 
slowly over the lengthscale 1. We follow Batchelor [19], and for 1z1<1 approximate 
the integral for 4 by 

with errors of order r2/12 when l - l z l > > r  i.e. away from the ends of the drop. The 
radial field close to the surface of the drop is 

The electric field within the drop is divergence free, and integration over each cross- 
section of constant z leads to a flux conservation equation 

( v R 2 E ; ) ’ + 2 ? r R ( 1 +  R”)”*E;  = 0 

where E” is the field normal to the interface, and ’ denotes d/dz. At the interface the 
tangential electric field is continuous, and the normal field satisfies & , € ; = E @ ; .  These 
jump conditions allow us to convert the above expression for the field inside the drop 
to one involving the field on the outside surface of the drop: 

( R * ( E ; +  E ; R ’ ) ) ’ + z R ~ - ’ ( E ; -  E;R‘ )  = o 
where K = E , / E ~ .  We now neglect the term (R*R’E; ) ’ ,  which will turn out to be 
0 ( & , b 2 / s J 2 )  smaller than (!?’E;)‘. This gives a simplified flux equation 

K R  dE; 
2 dz 

E ; = - ( K  - l ) R ‘ E ; - -  -. (3) 

Using the relation (2) we can eliminate E ;  from (3) to give q ( z ) :  

The slender-body expression ( 1 )  for # ( R ,  z) then becomes 

r$ = l n ( ( / * - z 2 ) / r 2 ) ( K ( R 2 ~ ’ ) ’ - 2 R R ‘ ~ ’ ) .  

We solve this iteratively 

E 
2 

4 = -Ez--  h ( ( / * - z 2 ) / r 2 ) ( K  - l ) R R ‘ + .  

with errors O((ln 1/b)*Eb4/ l4) .  Hence 

E ; = E + E  
where the perturbation is 

E - ( K  - 1 ) ( R R ’  ln((12-z2)/r2))’+. 
2 

This result for E ;  may be inserted into the simplified flux equation (3) to give the 
radial field E ;  on the surface of the drop. In the next section we compute the electrical 
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stresses acting on the drop surface, and it is more convenient to work with the field 
normal to the surface 

E ; = - K ( I + R ” ) - ” ~  R‘E ;+R “;) ( 2 d z  

and the tangential electric field 

E : =  ( 1  + R ” ) - ’ / ~ ( E  + R , ~ ( I  - K ) ~ + E + .  , .), 

3. The drop shape 

The discontinuity in electric field and in the permittivity across the interface causes a 
jump in the Maxwell stress tensor 

7; = E o E , ( E , 4  -fs,lEl’). 

fs,e,(l- K - ’ ) ( ( E ; ) Z +  K ( E : ) 2 )  

For a perfectly insulating dielectric, the jump in stress normal to the surface is 

while the jump in tangential stress is zero. 

tension, which for the slender body is simply y / R ,  to leading order. Hence 
In equilibrium, this jump in the stress must be balanced by that due to interfacial 

(4) 
E“E’ (K  - , ) ’ E 2 d ( ~ ~ ’ 1 n ( ( l 2 - 2 2 ) / r ’ ) ) = - + c o n s t a n t  Y 

2 dz R 

where the constant term comes from the difference in hydrostatic pressures inside and 
outside the drop. 

Alternatively, once we have obtained the electric field around the slender drop, we 
may derive the above equation for the drop shape by the minimum energy arguments 
discussed in section 1 above. The energy E, of a dielectric body with volume V 
introduced into an electric field E is 

where E, is the field within V [13]; for our slender drop this becomes 

The surface energy is 

~ ~ = r ~ ~ ~ ~ T R ~ i + R ’ 2 ) ~ / ’ d r  

and to leading order we may neglect the term in R’. If we minimize the total energy, 
subject to the constraint that the drop volume TR’ dz is constant, the Euler-Lagrange 
equations yield the stress balance equation (4) Cor the drop shape. 

To make further progress we replace ln((f2- z 2 ) / r 2 )  by 2 ln(f /b) .  The equation (4) 
for the drop shape has a first integral 

- - ~ ~ ~ ~ ( ~ - l ) ~ E ~ R ’ ~ l n ( f / b ) = y  --- , (do 2 
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R‘= 0 at z = 0, and hence the constant of integration Ro must equal the drop radius 
b at the centre. We now scale lengths in the z direction by mp-”’ and lengths in the 
r direction by @I”, where 

The goveming equation becomes 

I 1  
R” In(// b) = --- 

R Ro 

Making the parametrization 

R = Ro cos’ 0 

we obtain the drop shape 

Figure 2 shows this shape, with aspect ratio 1.45. A local expansion of the slender 
body shape ( 5 )  shows that the drop tip has the form 

r - ( i - ~ ) ~ / ~  

intermediate between a rounded and a pointed end. Slender body analyses are usually 
poor in the neighbourhood of the ends, and this local result has no particular 
significance. 

The volume of the drop is 

and hence 

Reverting to dimensional lengths, we can express the aspect ratio of the drop in the form 

Figure 2. The drop shape predicted by slender body analysis, shown with an aspect ratio 
l /b=1.45.  
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The energy analysis discussed in section 1 predicts an equilibrium aspect ratio / /b  
which satisfies 

when / /b  >> 1. These two expressions (6) and (7) differ only in the numerical factor on 
the right-hand side. A small difference in the aspect ratio / / b  will make little difference 
to the terms in(i/b), and we then find that the slender body analysis predicts an aspect 
ratio which is longer than the energy analysis for a spheroid, by a factor 1.34. 

Figure 3 shows results obtained from a numerical solution of the full governing 
equations, described in detail elsewhere [ll]. The ratio of permittivities is K = 25, and 
the field strength E** = 0.34. The drop starts as a spheroid with aspect ratio 8 and 
relaxes to its equilibrium shape, with aspect ratio 8.4. Both initial and final shapes are 
shown in the figure (which depicts oniy the right-hand haif of the drop). Minimum 
energy arguments predict an aspect ratio 7.4. The asymptotic energy prediction (7) is 
/ / b =  16.6 while that of slender body theory (6) is //b=23.3, but both these results 
are accurate only to O(ln(//b))-', and In 8 = 2.08. Thus the slender body analysis has 
predicted that the ends of the drop will be more pointed than those of a spheroid (as 
observed experimentally [3,6,7]), but the predicted aspect ratio will not be very 
accuraie uniess ihe aspeci raiio is exceedingiy iarge. Tnis is a standard feature of 
slender-body analyses, and considerable effort is required to work to higher order in 
(ln(//b))-': the example of low Reynolds number drag coefficients is considered, for 
example, in [ 191. 

Figure 2. e,/a2=25. E*'=0.34. The right-hand halves of two shaper are shown: . _ .  , a 
spheroid, with aspect ralia 8; -, the equilibrium drop shape, aspect ratio 8.4. 
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